Создание и продвижение сайтов:
SiteGround web hosting Studio ITSD
Статьи и обозрения
Электрический теплый пол

«Электрический теплый пол»

Технология, устройство, монтаж, подключение и обслуживание теплого пола

Подробнее...
 
Почитаем - посчитаем: Теплый пол - роскошь подпольного обогрева?

Почитаем - посчитаем: Теплый пол - роскошь подпольного обогрева?

Преимущества системы «теплый пол» люди оценили еще в древности, но лишь сравнительно недавно начали применять для ее устройства электричество. Сегодня заказчики, как правило, не сомневаются в том, устанавливать подпольный обогрев или нет. Всех интересует только одно: какой вариант системы теплого пола — водяной или электрический — использовать в конкретном доме или квартире.

Подробнее...
 
Нужен ли теплый пол в квартире?

Нужен ли теплый пол в квартире?

 Комфорт и уют в вашем доме во многом зависит от оптимального температурного режима в жилых помещениях, с рациональным распределением движения этого тепла по комнатным воздушным зонам.

Подробнее...
 
Преимущества кабельной системы обогрева "теплый пол" по сравнению с традиционными системами отопления.

Преимущества кабельной системы обогрева "теплый пол" по сравнению с традиционными системами отопления.

Кабельная система обогрева "теплый пол" не требует обслуживания на протяжении всего срока эксплуатации.

Для отопления с использованием радиаторов или труб в полу для коттеджей необходимо будет использовать незамерзающую жидкость, а не воду. Иначе зимой может произойти замерзание системы, например, при длительном отсутствии хозяев и пол будет поврежден при расширении воды. Затраты на ремонт в этом случае будут очень большими.

Подробнее...
 
О чем следует помнить, при желании установить пол с подогревом

О чем следует помнить, при желании установить пол с подогревом?

Собственно говоря, при системе напольного обогрева можно использовать все отделочные материалы, но существует определенная граница окупаемости.

Подробнее...
 
Теплый пол и безопасность

Теплый пол и безопасность

Комфорт и тепло в холодную пору – главное, чего ожидает потребитель, устанавливая у себя дома теплые полы. Однако современные стандарты качества предъявляют к бытовым приборам и системам повышенные требования: они должны быть не только эргономичными и функциональными, но и, прежде всего, – безопасными. В этой статье мы предлагаем поговорить о безопасности современной системы отопления - электрических теплых полах.

Подробнее...
 
Тепло - дело тонкое. Теплоизоляция теплого пола.

Тепло - дело тонкое. Теплоизоляция теплого пола.

Преимущества сверхтонкого теплого пола

«Теплый пол» продолжает завоевывать симпатии обладателей городских квартир, коттеджей и коммерческих помещений. Обсуждаем в кругу специалистов технические особенности монтажа и функционирования системы.

Подробнее...
 
Электрические теплые полы: виды и особенности

Электрические теплые полы: виды и особенности

Электрический теплый пол – идеальный вариант как для локального (для повышения комфортного тепла), так и для полного обогрева квартиры. Все подобного рода системы работают на основе нагревательного кабеля. Однако кабель в теплых полах может быть применен по- разному. Каждый из вариантов имеет свои достоинства и недостатки.

Подробнее...
 
Инфракрасная система отопления

Инфракрасная система отопления на базе ПЛЭН - это идеальное решение для Вашего дома

Системы отопления дают вам власть над стихией. Отопление делает лютую зиму практически незаметной, сырую осень комфортной, капризную весну приятной.

Подробнее...
 
Инфракрасные системы обогрева пола и помещений

Инфракрасные системы обогрева пола и помещений, или Разумное тепло!

Скоро канет в Лету эра холодных полов и стен, прохладная поверхность которых особенно ощущается в межсезонье. На сегодняшний день благодаря новым технологиям можно решить эту проблему. Мы уже рассказывали о водяных и электрических теплых полах. Сегодня речь пойдет об инфракрасных системах обогрева (ИК).

Подробнее...
 
Как смонтировать электрический теплый пол

Как смонтировать электрический теплый пол

Если вы собрались монтировать теплый пол самостоятельно, первое, что нужно сделать, — это внимательно прочитать инструкцию, содержащую важные сведения о безопасности, установке и эксплуатации продукта. Ошибки при установке могут привести к выходу системы из строя. Ведь если окажется, что теплый пол не работает, необходимо разбивать стяжку, устранять неисправность и заливатьвновь. К такой же длительной и дорогостоящей процедуре придется прибегать и в случае поломки теплого пола в процессе эксплуатации.

Подробнее...
 
Укладываем теплый пол под ламинат своими руками

Укладываем теплый пол под ламинат своими руками

Каждый раз зимой клялся-божился, что уж следующей осенью – точно буду утепляться по полной. И каждый раз забывал, отодвигал на задний план. А в прошлом году заметил, что уже и осенью в квартире холодновато становится, и решил – хватит откладывать.

Подробнее...
 
Монтаж системы подогрева пола Siemens

Монтаж системы подогрева пола Siemens

Систему подогрева пола Siemens можно смонтировать своими руками, это хоть и сложно, но вполне доступно.

Подробнее...
 
Монтаж теплого пола Devi

Монтаж теплого пола Devi

Теплые полы  фирмы Devi уложить можно своими руками строго соблюдая инструкция по установке и имея опыт работы в строительстве и ремонте.

Подробнее...
 
Монтаж теплого пола Nexans

Монтаж теплого пола Nexans

Существует мнение, с точки зрения потребителя, что единственным недостатком «теплого пола» является сложность установки. Это мнение, особенно по отношению к системе Nexans, неправильно.

Подробнее...
 
Монтаж пленочного теплого пола Caleo

Монтаж пленочного теплого пола Caleo

Подробное описание монтажа пленочных инфракрасных полов CALEO.

Подробнее...
 
Монтаж теплого пола CALEO под керамическую плитку и керамогранит

Монтаж теплого пола CALEO под керамическую плитку и керамогранит

Традиционно в России системы теплого пола укладываются под керамическую плитку и керамогранит. Эти материалы являются эффективными поглотителями тепла, поэтому субъективно ощущаются холодными.

Подробнее...
 
кондиционеры

Кондиционер

Кондиционе́р — это устройство для поддержания оптимальных климатических условий в квартирах, домах, офисах, автомобилях, а также для очистки воздуха в помещении от нежелательных частиц. Предназначен для снижения температуры воздуха в помещении при жаре, или (реже) — повышении температуры воздуха в холодное время года в помещении.

История

Современное понятие «кондиционер» (air conditioner, от англ. air — воздух и condition — состояние) как обозначение устройства для поддержания заданной температуры в помещении, существует достаточно давно. Интересно, что впервые слово кондиционер было произнесено вслух ещё в 1815 году. Именно тогда француз Жанн Шабаннес получил британский патент на метод «кондиционирования воздуха и регулирования температуры в жилищах и других зданиях». Однако практического воплощения идеи пришлось ждать достаточно долго. Только в 1902 году американский инженер-изобретатель Уиллис Кэрриер (Willis Carrier) собрал промышленную холодильную машину для типографии Бруклина в Нью-Йорке. Самое любопытное, что первый кондиционер предназначался не для создания приятной прохлады работникам, а для борьбы с влажностью, cильно ухудшавшей качество печати.

«Ископаемым» предком всех современных сплит-систем и оконников может считаться первый комнатный кондиционер, выпущенный компанией General Electric ещё в 1929 году. Поскольку в качестве хладагента в этом устройстве использовался аммиак, пары которого небезопасны для здоровья человека, компрессор и конденсатор кондиционера были вынесены на улицу. То есть по своей сути это устройство было самой настоящей сплит-системой. Однако, начиная с 1931 года, когда был синтезирован безопасный для человеческого организма фреон, конструкторы сочли за благо собрать все узлы и агрегаты кондиционера в одном корпусе. Так появились первые оконные кондиционеры, далекие потомки которых успешно работают и в наши дни.

Долгое время лидерство в области новейших разработок по вентиляции и кондиционированию воздуха принадлежало американским компаниям, однако, в конце 50-х, начале 60-х годов инициатива прочно перешла к японцам. В дальнейшем именно они определили лицо современной индустрии климата.

Так в 1958 году японская компания Daikin предложила первый тепловой насос, тем самым научив кондиционеры подавать в помещение не только холод, но и тепло.

А ещё через три года произошло событие, в значительной мере предопределившее дальнейшее развитие бытовых и полупромышленных систем кондиционирования воздуха. Это начало массового выпуска сплит-систем. Начиная с 1961 года, когда японская компания Toshiba впервые запустила в серийное производство кондиционер, разделённый на два блока, популярность этого типа климатического оборудования постоянно росла. Благодаря тому, что наиболее шумная часть кондиционера — компрессор теперь вынесена на улицу, в помещениях, оборудованных сплит-системами, намного тише, чем в комнатах, где работают оконники. Уровень шума уменьшен на порядок. Второй огромный плюс — это возможность разместить внутренний блок сплит-системы в любом удобном месте.

Сегодня выпускается немало различных типов внутренних устройств: настенные, подпотолочные, напольные и встраиваемые в подвесной потолок — кассетные и канальные. Это важно не только с точки зрения дизайна — различные типы внутренних блоков позволяют создавать оптимальное распределение охлаждённого воздуха в помещениях определённой формы и назначения.

А в 1968 году на рынке появился кондиционер, в котором с одним внешним блоком работало сразу несколько внутренних. Так появились мультисплит-системы. Сегодня они могут включать в себя от двух до девяти внутренних блоков различных типов. Существенным нововведением стало появление кондиционера инверторного типа. В 1981 году компания Toshiba предложила первую сплит-систему, способную плавно регулировать свою мощность, а уже в 1998 году инверторы заняли 95 % японского рынка. Ну и, наконец, последний из наиболее популярных в мире типов кондиционеров — VRV — системы были предложены в 1982 году компанией Daikin.

Виды

Центральные кондиционеры — это промышленные агрегаты, которые применяются для обработки воздуха в крупных коммерческих и административных зданиях, плавательных бассейнах, промышленных предприятиях и других. Центральный кондиционер является неавтономным, то есть для работы ему необходим внешний источник холода: вода от чиллера, фреон от внешнего компрессорно-конденсаторного блока или горячая вода от системы центрального отопления, бойлера. Основными целевыми функциями данных систем являются: комфортная вентиляция с рекуперацией тепла, нагревом и охлаждением; вентиляция и осушение в помещениях плавательных бассейнов; промышленная вентиляция с рекуперацией и без рекуперации тепла. Обработанный центральными кондиционерами воздух по сети воздуховодов распределяется по всему помещению.

Прецизионные кондиционеры — В основном такой кондиционер применяется в помещениях, требующих поддержания заданных параметров с высокой надёжностью и точностью, таких как медицинские учреждения, производственные помещения, лаборатории, посты управления, узлы связи, залы электронных вычислительных машин, диспетчерские пункты и другие помещения. Представляет собой моноблок, который содержит вентагрегат, фильтр, холодильную машину с фреоновым воздухоохладителем, водяной воздухонагреватель и электрокалорифер. Применяется кондиционер как в системах с рециркуляцией воздуха, так и в системах со 100 % приточным воздухом.

Автономные системы кондиционирования воздуха снабжаются извне только электрической энергией, например, шкафные кондиционеры и тому подобное. Такие кондиционеры имеют встроенные компрессионные холодильные машины, работающие на фреоне-R22, R134A, R407C. Автономные системы охлаждают и осушают воздух, для чего вентилятор продувает рециркуляционный воздух через поверхностные воздухоохладители, которыми являются испарители холодильных машин, а в переходное или зимнее время они могут производить подогрев воздуха с помощью электрических подогревателей или методом реверсирования работы холодильной машины, по циклу так называемого «теплового насоса».

Большинство бытовых кондиционеров не могут работать при отрицательных наружных температурах, особенно в режиме подогрева, поэтому в средних широтах использовать их вместо обычных систем отопления можно только в переходный период. Кондиционеры, адаптированные к работе и при отрицательных температурах, называются всесезонными (или — кондиционерами с всесезонным блоком).

Для охлаждения небольших объёмов (например, внутренних полостей какого-либо оборудования, процессоров ПК) иногда используют кондиционеры, основанные на элементах Пельтье. Такие кондиционеры бесшумны, легки, не имеют движущихся деталей, надёжны и компактны. Но имеют очень ограниченную холодопроизводительность, дороги и менее экономичны.

Кондиционер воздуха, работающий на наружном воздухе, называется приточным; на внутреннем воздухе — рециркуляционным; на смеси наружного и внутреннего воздуха — кондиционером с рекуперацией.


  1. Мобильные — кондиционеры, не требующие монтажа; для использования достаточно вывести гибкий шланг или особый блок из помещения для отвода тёплого воздуха. Конденсат обычно скапливается в поддоне в нижней части мобильного кондиционера.
  2. Моноблочный кондиционер — новый тип кондиционеров, для использования необходимо два отверстия в стене. Преимущества: простой монтаж и обслуживание, отсутствие разъёмных соединений во фреоновой магистрали и, как следствие, отсутствие утечки фреона, максимально возможный коэффициент полезного действия, длительный срок службы, низкий уровень шума. Недостаток: высокая цена
  3. Оконные — состоящие из одного блока; монтируются в окне, стене и прочее. Недостатки: высокий уровень шума, уменьшение освещённости помещения из-за сокращения площади оконного проёма. Преимущества: дешевизна, лёгкость монтажа и последующего обслуживания, отсутствие разъёмных соединений во фреоновой магистрали и, как следствие, отсутствие утечки фреона, максимально возможный коэффициент полезного действия, длительный срок службы.
  4. Сплит-системы (англ. split — расщепление) — состоят из двух блоков, внутреннего и наружного размещения, соединённых между собой трассой фреонопровода (обычно используются медные трубки). Наружный блок содержит (подобно холодильнику) компрессор, конденсатор, дроссель и вентилятор; внутренний блок — испаритель и вентилятор. Различаются по типу исполнения внутреннего блока: настенный, канальный, кассетный, напольно-подпотолочный (универсальный тип), колонный и другие.
  5. Мульти-сплит системы — состоят из наружного блока и нескольких, чаще двух, внутренних блоков, связанных между собой трассой фреонопровода. Как и обычные, сплиты различаются по типу исполнения внутренних блоков.
  6. Системы с изменяемым расходом хладагента (VRF, VRV и так далее) состоят из одного наружного блока (при необходимости увеличения общей мощности могут использоваться комбинации наружных блоков) и из некоторого количества внутренних блоков. Особенность систем состоит в том, что наружный блок меняет свою холодопроизводительность (мощность) в зависимости от потребностей внутренних блоков по данной мощности.

Устройство кондиционера


1 — конденсатор
2 — терморегулирующий вентиль
3 — испаритель
4 — компрессор

Основными узлами любого местного автономного кондиционера (как и любой холодильной установки) являются:

  • компрессор — сжимает рабочую среду — хладагент (как правило, фреон) и поддерживает его движение по холодильному контуру;
  • конденсатор — радиатор, расположенный во внешнем блоке. Название отражает процесс, происходящий при работе кондиционера — переход фреона из газообразной фазы в жидкую (конденсация). Для высокой эффективности и длительной эксплуатации преимущественно изготавливается из меди и алюминия;
  • испаритель — радиатор, расположенный во внутреннем блоке. В испарителе фреон переходит из жидкой фазы в газообразную (испарение). Также в основном изготавливается из меди и алюминия;
  • (терморегулирующий вентиль) — трубопроводный дроссель, который понижает давление фреона перед испарителем;
  • вентиляторы — создают поток воздуха, обдувающего испаритель и конденсатор. Используются для более интенсивного теплообмена с окружающим воздухом.

Принцип работы

Компрессор, конденсатор, дроссель (капиллярная трубка, терморегулирующий аппарат) и испаритель соединены тонкостенными медными (в последнее время иногда и алюминиевыми) трубками и образуют холодильный контур, внутри которого циркулирует хладагент (традиционно в кондиционерах используется смесь фреона с небольшим количеством компрессорного масла, однако в соответствии с международными соглашениями производство и использование старых сортов, разрушающих озоновый слой, постепенно прекращается, в современных кондиционерах наиболее часто используются фреоны R-22 и R-410A).

В процессе работы кондиционера происходит следующее (рассмотрим на примере фреона R22). На вход компрессора из испарителя поступает газообразный хладагент под низким давлением в 3—5 атмосфер и температурой 10—20 °C. Компрессор кондиционера сжимает хладагент до давления 15—25 атмосфер, в результате чего хладагент нагревается до 70—90 °C, после чего поступает в конденсатор.

Благодаря интенсивному обдуву конденсатора, хладагент остывает и переходит из газообразной фазы в жидкую с выделением дополнительного тепла. Соответственно, воздух, проходящий через конденсатор, нагревается.

На выходе конденсатора хладагент находится в жидком состоянии, под высоким давлением и с температурой на 10—20 °C выше температуры атмосферного (наружного) воздуха. Из конденсатора тёплый хладагент попадает в терморегулирующий вентиль, который в простейшем случае представляет собой капилляр (длинную тонкую медную трубку, свитую в спираль). На выходе терморегулирующего вентиля давление и температура хладагента существенно понижаются, часть хладагента при этом может испариться.

После дросселирующего устройства (капиллярной трубки или ТРВ) смесь жидкого и газообразного хладагента с низким давлением поступает в испаритель. В испарителе жидкий хладагент переходит в газообразную фазу с поглощением тепла, соответственно, воздух, проходящий через испаритель, остывает. Далее газообразный хладагент с низким давлением поступает на вход компрессора и весь цикл повторяется. Этот процесс лежит в основе работы любого кондиционера и не зависит от его типа, модели или производителя.

Работа кондиционера (холодильника) без отвода тепла от конденсатора (или горячего спая элемента Пельтье) принципиально невозможна. Это фундаментальное ограничение, вытекающее из второго закона термодинамики. В обычных бытовых установках это тепло является бросовым и отводится в окружающую среду, причём его количество значительно превышает величину, поглощённую при охлаждении помещения (камеры). В более сложных устройствах это тепло утилизируется для бытовых целей: горячее водоснабжение и другое.

Неисправности

Одна из наиболее серьёзных неисправностей связана с устройством кондиционера и возникает в том случае, если в испарителе фреон не успевает полностью перейти в газообразное состояние. В этом случае на вход компрессора попадает жидкость, в результате чего компрессор выходит из строя из-за гидроудара. Причин, по которым фреон не успевает испариться, может быть несколько, но самые распространённые вызваны неправильной эксплуатацией плохо спроектированного кондиционера. Во-первых, причиной неисправности могут стать загрязнённые фильтры (при этом ухудшается обдув испарителя и теплообмен), во-вторых — включение кондиционера при отрицательных температурах наружного воздуха. При отрицательных температурах (ниже −10 °C) существует реальная угроза попадания жидкого фреона в полость компрессора, что приводит к его поломке. В более дорогих, правильно спроектированных системах присутствуют дополнительные датчики, ёмкости, исключающие попадание жидкого фреона на вход компрессора. В таких системах наиболее вероятной поломкой становится отказ одного из датчиков, что, впрочем, оставляет холодильную систему жизнеспособной. В бытовых оконных кондиционерах БК-1500, БК-2500 производства СССР (Бакинский завод), для устранения данного явления применялся докипатель (он применяется во многих моделях среднего и верхнего ценового диапазона кондиционеров).

Утечка хладагента также может повлечь за собой неправильную/неэффективную работу кондиционера. В основном причиной утечки является выполненный с нарушениями монтаж фреоновой магистрали, например, некачественная развальцовка трубок. Со временем, наиболее заметным внешним проявлением утечки, кроме снижения производительности, является обмерзание жидкостного вентиля (сторона высокого давления) на внешнем блоке сплит-системы, что обуславливается понижением давления хладагента, которое в норме для кондиционеров на хладагенте R22 составляет 4.5 — 5.5 бар, вследствие чего жидкий хладагент начинает испаряться в самой трубке нагнетания, не доходя до испарителя (радиатор внутреннего блока). Однако обмерзание может наблюдаться и по другим причинам.

Наличие воздуха и влаги в контуре со временем может привести к выходу из строя компрессора, закупориванию капилляра ледяными пробками. Причиной попадания воздуха в контур также является некачественный монтаж сплит-системы. При правильном монтаже после сборки контура производится его вакуумирование в течение определённого времени (зависит от объёма контура, и для бытовых систем обычно составляет от 20 минут до часа) специальным вакуумным насосом, с целью удаления воздуха и испарения влаги, присутствующей в контуре.

 
Действия по оказанию первой помощи

Действия по оказанию первой помощи при электротравме:

Устраните воздействие тока на пострадавшего (выключите электроустановку, откиньте электропровод и т.п.) Работайте в резиновых перчатках, резиновой обуви. 
Используйте электроизолированный инструмент.

Подробнее...
 
Молния. Поражающие факторы. Последствия.

Молния. Поражающие факторы. Последствия.

Атмосферные разряды имеют сокрушительную силу и их разнообразные последствия представляют серьёзную угрозу для жизни человека и его имущества.

Подробнее...
 
Правила поведения во время грозы

Правила поведения во время грозы.


1. Если появились признаки приближения грозы, переждите ее в помещении.

2. Закройте окна, двери, дымоходы. Выключите телевизор, радио, электроприборы, телефон.

3. Держитесь дальше от электропроводки, антенны, окон, дверей.

Подробнее...
 
ПРО МОЛНИЮ

ПРО МОЛНИЮ

Молния — электрический искровой разряд, проявляющийся, обычно, яркой вспышкой света и сопровождающим её громом. Электрическая природа молнии была раскрыта в исследованиях американского физика Б. Франклина, по идее которого был проведён опыт по извлечению электричества из грозового облака. Молнии также были зафиксированы на Венере, Юпитере, Сатурне и Уране.

Подробнее...
 
Проблемы молниезащиты

Некоторые проблемы связанные с защищённостью существующих сооружений, проектированием и реализацией молниезащиты зданий на территории РФ

В своей основе имеющиеся проблемы молниезащиты (грозозащиты) имеют нормативный характер. Действующие на территории РФ нормы в области молниезащиты не отражают, в полной мере, достижений современной науки и техники. Эффективные методы и средства молниезащиты наиболее полно представлены в нормах МЭК (Международная электротехническая комиссия) и подтверждены широким практическим применением в промышленно развитых странах.

Подробнее...
 
Рекомендации по установке молниезащиты

Рекомендации по установке молниезащиты

Грозозащита (молниезащита) зданий и сооружений – одно из основных направлений нашей деятельности. Мы в комплексе решаем проблему грозозащиты (молниезащиты) зданий, защищая дом и его обитателей от всех известных на данный момент поражающих факторов молнии (прямое попадание молнии в здание, вторичное проявление разряда, грозовые и коммутационные перенапряжения в сетях).


Подробнее...
 
Основные термины

Заземление. Основные термины.

Земля (относительная, эталонная) - проводящая электрический ток и находящаяся вне зоны влияния какого-либо заземлителя часть земной коры, электрический потенциал которой принимают равным нулю.


Подробнее...
 
Удары молнии (1910 год)

Удары молнии

(издание 1910 года, Франция, на русском языке)


Будучи застигнутым на биваке грозой, любители гор ведут себя по разному: кто-то настороженно высчитывает по вспышкам расстояние до грозового фронта (как будто это позволит избежать нежеланной встречи). Кто-то подсчитывает массу «железа» на себе, самой палатке и вне ее, вспоминая, из какого материала сделан каркас. Отдадим должное тем, кто способен спать в условия, когда вспышка пробивается даже через закрытые глаза. Но таких среди туристов и альпинистов единицы. Что делать остальным? Помимо надежды на лучшее и преферанса, скоротать время поможет чтение вслух литературы. Годится любая, но особенно полезно будет поближе познакомиться с научным трактатом о нраве молнии…. (О.Янчевский.)

Подробнее...
 
Заземление, принципы устройства

Заземление, принципы устройства

Заземление — электрическое соединение предмета из проводящего материала с землёй. Заземление состоит из заземлителя (проводящей части или совокупности соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду) и заземляющего проводника, соединяющего заземляемое устройство с заземлителем.




Заземлитель может быть простым металлическим стержнем (чаще всего стальным, реже медным) или сложным комплексом элементов специальной формы. Качество заземления определяется значением электрического сопротивления цепи заземления, которое можно снизить, увеличивая площадь контакта или проводимость среды — используя множество стержней, повышая содержание солей в земле и т.д.Заземление

Устройство заземления

В России требования к заземлению и его устройство регламентируются "Правилами устройства электроустановок (ПУЭ)".
Обозначения Заземление


Проводники защитного заземления во всех электроустановках, а также нулевые защитные проводники в электроустановках напряжением до 1 кВ с глухозаземленной нейтралью, в том числе шины, должны иметь буквенное обозначение РЕ и цветовое обозначение чередующимися продольными или поперечными полосами одинаковой ширины (для шин от 15 до 100 мм) желтого и зеленого цветов. Нулевые рабочие (нейтральные) проводники обозначаются буквой N и голубым цветом. Совмещенные нулевые защитные и нулевые рабочие проводники должны иметь буквенное обозначение PEN и цветовое обозначение: голубой цвет по всей длине и желто-зеленые полосы на концах.

Ошибки в устройстве заземления

Неправильные PE-проводники
Иногда в качестве заземлителя используют водопроводные трубы или трубы отопления, однако их нельзя использовать в качестве заземляющего проводника. В водопроводе могут быть непроводящие вставки (например, пластиковые трубы), электрический контакт между трубами может быть нарушен из-за коррозии, и, наконец, часть трубопровода может быть разобрана для ремонта.

Объединение рабочего нуля и PE-проводника

Другим часто встречающимся нарушением является объединение рабочего нуля и PE-проводника за точкой их разделения (если она есть) по ходу распределения энергии. Такое нарушение может привести к появлению довольно значительных токов по PE-проводнику (который не должен быть токонесущими в нормальном состоянии), а также к ложным срабатываниям устройства защитного отключения (если оно установлено).

Неправильное разделение PEN-проводника
Крайне опасным является следующий способ «создания» PE-проводника: прямо в розетке определяется рабочий нулевой проводник и ставится перемычка между ним и PE-контактом розетки. Таким образом, PE-проводник нагрузки, подключенной к этой розетке, оказывается соединенным с рабочим нулем.

Опасность данной схемы в том, что на заземляющем контакте розетки, а следовательно, и на корпусе подключенного прибора появится фазный потенциал, при выполнении любого из следующих условий:
Разрыв (рассоединение, перегорание и т.д.) нулевого проводника на участке между розеткой и щитом (а также далее, вплоть до точки заземления PEN-проводника);
Перестановка местами фазного и нулевого (фазный вместо нулевого и наоборот) проводников, идущих к этой розетке.

Защитная функция заземления

Принцип защитного действия

Защитное действие заземления основано на двух принципах:
Уменьшение до безопасного значения разности потенциалов между заземляемым проводящим предметом и другими проводящими предметами, имеющими естественное заземление.
Отвод тока утечки при контакте заземляемого проводящего предмета с фазным проводом. В правильно спроектированной системе появление тока утечки приводит к немедленному срабатыванию защитных устройств (устройств защитного отключения — УЗО).

Таким образом, заземление наиболее эффективно только в комплексе с использованием устройств защитного отключения. В этом случае при большинстве нарушений изоляции потенциал на заземленных предметах не превысит опасных величин. Более того, неисправный участок сети будет отключен в течение очень короткого времени (десятые ? сотые доли секунды — время срабатывания УЗО).

Типичный случай неисправности электрооборудования — попадание фазного напряжения на металлический корпус прибора вследствие нарушения изоляции[4]. В зависимости от того, какие защитные мероприятия реализованы, возможны следующие варианты:

-
Корпус не заземлен, УЗО отсутствует (наиболее опасный вариант). Корпус прибора будет находиться под фазным потенциалом и это никак не будет обнаружено. Прикосновение к такому неисправному прибору может быть смертельно опасным.

-
Корпус заземлен, УЗО отсутствует. Если ток утечки по цепи фаза-корпус-заземлитель достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то предохранитель сработает и отключит цепь. Наибольшее действующее напряжение (относительно земли) на заземленном корпусе составит Umax=RG·IF, где RG ? сопротивление заземлителя, IF ? ток, при котором срабатывает предохранитель, защищающий эту цепь. Данный вариант недостаточно безопасен, так как при высоком сопротивлении заземлителя и больших номиналах предохранителей потенциал на заземленном проводнике может достигать довольно значительных величин. Например, при сопротивлении заземлителя 4 Ом и предохранителе номиналом 25 А потенциал может достигать 100 вольт.
Корпус не заземлен, УЗО установлено. Корпус прибора будет находиться под фазным потенциалом и это не будет обнаружено до тех пор, пока не возникнет путь для прохождения тока утечки. В худшем случае утечка произойдет через тело человека, коснувшегося одновременно неисправного прибора и предмета, имеющего естественное заземление. УЗО отключает участок сети с неисправностью, как только возникла утечка. Человек получит лишь кратковременный удар током (0,01?0,3 секунды — время срабатывания УЗО), как правило, не причиняющий вреда здоровью.
Корпус заземлен, УЗО установлено. Это наиболее безопасный вариант, поскольку два защитных мероприятия взаимно дополняют друг друга. При попадании фазного напряжения на заземленный проводник ток течет с фазного проводника через нарушение изоляции в заземляющий проводник и далее в землю. УЗО немедленно обнаруживает эту утечку, даже если та весьма незначительна (обычно порог чувствительности УЗО составляет 10 мА или 30 мА), и быстро (0,01?0,3 секунды) отключает участок сети с неисправностью. Помимо этого, если ток утечки достаточно велик (превышает порог срабатывания предохранителя, защищающего эту цепь), то может также сработать и предохранитель. Какое именно защитное устройство (УЗО или предохранитель) отключит цепь — зависит от их быстродействия и тока утечки. Возможно также срабатывание обоих устройств.


Заземление
Сопротивление пластиковой вставки (R4) может быть настолько велико, что электрический контакт будет почти исключён

Заземление
Ложное срабатывание УЗО (F4) при объединении нулей за точкой разделения

Заземление
Почему крайне опасно создавать PE-проводник прямо в розетке

Заземление
Описаные варианты



Типы заземления
TN-C
Система TN-C (фр. Terre-Neutre-Combine) предложена немецким концерном АЭГ (AEG, Allgemeine Elektricitats-Gesellschaft) в 1913 году. Рабочий ноль и PE-проводник (Protection Earth) в этой системе совмещены в один провод. Самым большим недостатком было образование линейного напряжения (в 1,732 раза выше фазного) на корпусах электроустановок при аварийном обрыве нуля.
Несмотря на это, на сегодняшний день можно встретить данную систему заземления в постройках стран бывшего СССР опасный недостаток TN-C



Разработка системы TN-S
На замену условно опасной системы TN-C в 1930-х была разработана система TN-S (фр. Terre-Neutre-Separe), рабочий и защитный ноль в которой разделялись прямо на подстанции, а заземлитель представлял собой довольно сложную конструкцию металлической арматуры. Таким образом, при обрыве рабочего нуля в середине линии, корпуса электроустановок не получали линейного напряжения. Позже такая система заземления позволила разработать дифференциальные автоматы и срабатывающие на утечку тока автоматы, способные почувствовать незначительный ток. Их работа и по сей день основывается на законах Киргхофа, согласно которым текущий по фазному проводу ток должен быть численно равным текущему по рабочему нулю току.
Также можно наблюдать систему TN-C-S, где разделений нулей происходит в середине линии, однако в случае обрыва нулевого провода до точки разделения корпуса окажутся под линейным напряжением, что будет представлять угрозу для жизни при касании.


 
Об электромагнитной экологии электроустановок зданий

Об электромагнитной экологии электроустановок зданий

Казалось бы, причем здесь система электроснабжения здания как таковая?

Что в ней может оказывать негативное влияние?

Каков физический механизм формирования этого воздействующего фактора?

Сколь массово распространена потенциально опасная ситуация?

И что делать для защиты от подобных негативных воздействий?

Постараемся детально разобраться с этими вопросами.

 

Подробнее...
 


Яндекс.Метрика